مدل پیش‌بینی رضایتمندی شهروندان از بوستان‌های شهری با استفاده از شبکه عصبی مصنوعی

نویسندگان

  • حمید گشتاسب هیات علمی گروه محیط‌زیست طبیعی و تنوع زیستی، دانشکده محیط‌زیست، کرج
  • علی جهانی هیات علمی گروه محیط‌زیست طبیعی و تنوع زیستی، دانشکده محیط‌زیست، کرج
چکیده مقاله:

یکی از مهم‌ترین عناصر شهرها، بوستان‌ها و فضاهای سبز شهری‌ هستند. نوع طراحی و عملکرد بوستان‌های شهری باید در راستای ضروریات زندگی شهری و در پاسخگویی به نیاز شهروندان باشد چرا که این امر می‌تواند در جهت ایجاد محیط زیست سالم و با ارزش شهری نیز به کار گرفته شود. هدف از انجام این پژوهش مدل‌سازی ارزیابی رضایتمندی بازدیدکنندگان از بوستان‌های شهری با استفاده از شبکه عصبی مصنوعی است. در انجام این پژوهش به منظور پردازش داده‌ها با ابزار هوشمند شبکه عصبی، از شبکه پرسپترون چند لایه استفاده شد. ابتدا 103 بوستان شهری در کرج و تهران انتخاب گردید و اطلاعات مربوط به متغیرهای منطقه‌ای، خدماتی و زیبایی‌شناختی در کلیه بوستان‌ها جمع‌آوری گردید. سپس اطلاعات جمع‌آوری شده به عنوان ورودی شبکه و نتایج حاصل از ارزیابی سطح رضایتمندی به عنوان خروجی شبکه در نظر گرفته شد. مقدار ضریب تعیین (R2) در این پژوهش 72/0 بدست آمد که نشان دهنده قابلیت مناسب شبکه عصبی مصنوعی در مدل‌سازی رضایتمندی از بوستان‌های شهری است. نتایج حاصل از آنالیز حساسیت نشان داد متغیرهای کیفیت منظر، تعداد زمین‌های ورزشی، مراکز فروش مواد غذایی، باربیکیو دارای بیشترین اثرگذاری بر روی رضایتمندی از بوستان‌های شهری بوده‌اند. لذا در برنامه‌ریزی و مدیریت اماکن عمومی همچون فضاهای سبز شهری، توجه به درک کاربران از محیط باید در الویت قرار گیرد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل سازی کیفیت زیباشناختی منظر در فضای سبز شهری با استفاده از شبکه عصبی مصنوعی

ارزیابی‌های کیفیت منظر عمدتا اشاره به نقش کلیدی عناصر طبیعی و مصنوعی منظر در ایجاد رضایت‌مندی و درک زیبایی از منظر دارند. هدف از این مقاله مدل‌سازی ارزیابی کیفیت زیباشناختی منظر با استفاده از شبکه عصبی مصنوعی به منظور کشف روابط حاکم در ساختار منظر و ارتباط عناصر منظر با کیفیت زیباشناختی آن است. جهت انجام پژوهش حاضر چهار بوستان (جمشیدیه، نهج البلاغه، قیطریه، آب و آتش) با تنوع بالا در کیفیت منظر ...

متن کامل

پیشبینی تقاضای مسافرت هوایی بین شهری در ایران با استفاده از شبکه های عصبی مصنوعی

پیشبینی تقاضای حمل و نقل هوایی میتواند نقش مهمی را در برنامهریزیهای کلان و خرد یک کشور ایفا کند. در سطح کلان میتوان به اولویتبندی تخصیص بودجه های دولتی به شهرهای مختلف برای ایجاد زیرساختهای حمل و نقل هوایی مانند فرودگاه یا خرید و اجاره هواپیما اشاره کرد و در سطوح خرد برای فعالیتهایی مثل طراحی و برنامهریزی عملیات فرودگاه، تصمیم گیری شرکتهای هواپیمایی برای ورود به بازارهای جدید، افزایش ظرفیت خطوط...

پیشبینی آماری پهنه بندی خطر زلزله احتمالی با استفاده شبکه های عصبی مصنوعی

پیش‌بینی محل وقوع زلزله‌های آتی همراه با تعیین درصد احتمال رخداد، می‌تواند در کاهش خطرات ناشی از زلزله بسیار سودمند باشد. تعیین محل‌های پیش‌بینی شده، سبب افزایش توجه به طراحی، به‌سازی لرزه­ای و ارزیابی قابلیت اعتمادپذیری سازه‌های موجود در این مکان‌ها می‌شود. در پیش‌بینی زمان وقوع زلزله فرضیه‌ها و نظریه‌های گسترده‌ای مطرح است. هنوز شیوه‌ای دقیق برای پیش‌بینی زمان رخداد زلزله‌های آتی مورد تأیید ق...

متن کامل

پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی AR...

متن کامل

مدل‌سازی بازده کششی تراکتور با استفاده از شبکه عصبی مصنوعی

در این مطالعه آزمایش­های مزرعه­ای در شرایط متفاوت عمق شخم، سرعت پیشروی و میزان وزنه­های متصل به تراکتور انجام شد. در این تحقیق، عمق شخم در چهار سطح 5، 10، 15 و 20 سانتی­متر، سرعت­های پیشروی در چهار سطح 5/2، 5/3، 5/4 و 5/5 کیلومتر بر ساعت و میزان سنگین­کننده نیز در چهار سطح 0، 40، 80 و 120 کیلوگرم قرار گرفت. شبکه­های عصبی مدل­سازی شده در این تحقیق که به­ منظور پیش­بینی بازده کششی تراکتور مورد اس...

متن کامل

تعیین ارزش دارایی‌های نامشهود با استفاده از شبکه عصبی مصنوعی

درک عوامل موثر بر ارزش شرکت برای سرمایه‌گذاران و اعتباردهندگان پیش از اتخاذ تصمیمات سرمایه‌گذاری یا اعطای تسهیلات، امری حیاتی است. از آن‌جایی که اقتصاد دانش‌محور در حال تکامل یافتن است، روش ایجاد ارزش شرکتی از شیوه سنتی مبتنی بر دارایی‌های فیزیکی به دانش نامشهود منتقل شده است. از این‌رو در آینده نه چندان دور، ارزش‌گذاری دارایی‌های نامشهود به موضوع مهمی در اقتصاد مبدل خواهد شد. این مطالعه بر آن ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 72  شماره 2

صفحات  239- 250

تاریخ انتشار 2019-06-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023